

www.knifeGrinders.com.au KG@knifegrinders.com.au Australia

By Vadim Kraichuk

Edge Rolling in High Vanadium Knives Sharpened with Aluminium Oxide versus CBN/Diamond

PLAN

The plan is to use the SET method (Structural Edge Testing) to test edge resistance to rolling in high vanadium knives with vanadium content ranging from 1% to 10%, sharpened with Aluminium Oxide versus Cubic Boron Nitride (CBN) & diamond abrasives.

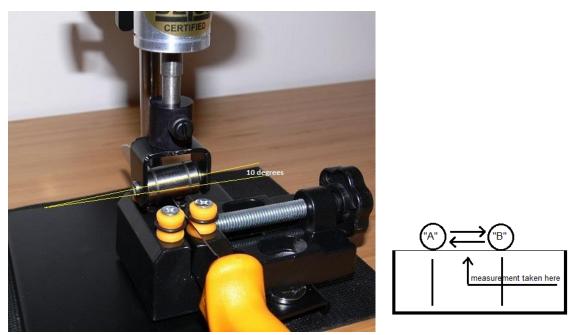
The goal is to obtain experimental data for the ongoing discussion among knife enthusiasts whether sharpening high vanadium knives with abrasives other than CBN and diamond enhances their edge propensity to rolling.

There is no smoke without fire, and the more people own high-end knives, the more we hear about this. The most plausible explanation is that the common abrasives weaken steel matrix around the vanadium carbides – being too soft for the vanadium carbides they only abrade the steel around the vanadium carbides rather than polish them.

A priori expectation is that we will see no significant difference in edge rolling before some threshold content of vanadium. Obvious practical application would be to allow the common abrasives for sharpening steels with lower than that vanadium content, and use exclusively CBN and diamond for higher.

Vanadium carbides are not the only high wear resistant carbides - niobium, cobalt, molybdenum and wolfram (tungsten) carbides also are, and should respond similarly to abrasives.

SET METHOD


<u>Structural Edge Tester</u> (SET) is a method and device developed by <u>Edge On Up</u> for testing edge stability. In a nutshell, the edge is subjected to controlled rolling, the extent of which is quantified. Edge sharpness tester used in the study: PT50A Industrial.

Impact cycle explained

The impact roller is a linear bearing slant at 10° to the horizontal base or in other words at 80° to the plane of the blade clamped vertically.

Standard impact assembly weight is 150 grams.

The impact roller is lowered at "A", then moved (rolled) over to "B" and then back to "A". A-B-A is one cycle.

See our video on YouTube https://youtu.be/EdGOSWjrMOE

Our standard SET testing procedure is to measure edge sharpness after every cycle for the first 5 cycles (Phase I), then after every 5 cycles to 50 cycles (Phase II), and then (i.e. from the 50th to 100th cycles) after every 10 cycles (Phase III).

Where by the 100th cycle the edge hasn't blunted to 500 BESS, we continue rolling, measuring sharpness every 20 cycles till reach 500 BESS.

Sharpness of the majority of knives (apart from CPM "supersteels") nears or exceeds 500 BESS, i.e is rendered blunt, by the 100th impact cycle, allowing us to watch the full **life cycle** of the edge within one 11-minute test.

The testing procedure yields additional information about events happening in the edge through the three distinctive phases:

- **Phase I** "Elastic deformation" from the 1st to the 5th impact cycle, when sharpness is measured after every cycle considering that interval between subsequent impact cycles is about 30 sec, this break in impact allows the edge to partially recover from rolling. This phase takes about 2.5 min.
- **Phase II** "Elasto-Plastic transition" from the 6th to 50th impact cycle, where the edge gets 5 impact cycles between sharpness measurements edge is challenged for resistance to plastic deformation. The elastic deformation transits to plastic here. Weaker steels simply crash in this phase. This phase takes 5 min.
- **Phase III** "Plastic deformation" from the 51st to 100th impact cycle, where the edge is continuously rolled 10 times before each next sharpness measurement, testing the edge stability to permanent rolling. This phase takes about 3.5 min.

Key indicators:

- Overall average sharpness over 100 impact cycles;
- Average sharpness in the Phase I (elastic deformation) calculated as an average of sharpness scores in the first 5 impact cycles;
- Sharpness by the end of the Phase II (elasto-plastic transition) calculated as an average of 3 sharpness scores: after 40, 45 and 50 impact cycles;
- Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling).

Overall, each SET test takes 11 minutes to estimate life cycle of the edge.

SELECTION OF KNIVES

For the purpose of a comparable selection, we selected steels with minimum content of other than Vanadium alloys. The table below illustrates how we picked steels from the knives in our disposal – those in bold were selected for this research.

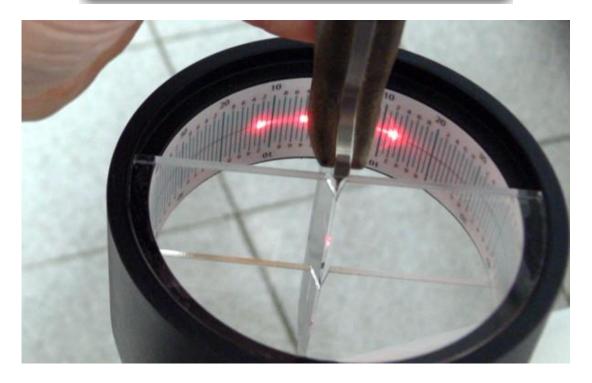
Knife Steel	HRC	Vanadium	С	Мо	W	Со	Nb	Cr
		%	%	%	%	%	%	%
Vanadis 10	63	9.8	2.9	1.5	-	-	-	8.0
S110V	63	9.0	2.8	2.3	-	2.5	3.0	15.3
Vancron 40	64	8.5	1.1	3.2	3.7	-	-	4.5
S290	70	5.1	2.0	2.5	14.3	11.0	-	3.8
M390 or CPM20CV	60	4.0	1.9	1.0	0.6	-	-	20.0
S30V	60	4.0	1.4	2.0	0.4	-	-	14.0
S35VN	60	3.0	1.4	2.0			0.5	14.0
Elmax	62	3.0	1.7	1.0	-	-	-	18.0
Lohmann PGK	62	2.0	1.2	1.5	1.5			8.2
D2	60	1.0	1.5	0.8	-	-	-	12

Selected Knives

Steel	V %		
Vanadis 10	9.8	Custom knife, Russia	
CPM20CV	4.0	Survive Knives GSO 4.1, USA	CPH-SDCV CPH
Elmax	3.0	Custom knife, Russia	ELMAX 62 HRC
Lohmann PGK	2.0	Kizlyar Supreme Dominus, Russia	DOMMANK POR STELL
D2	1.0	Ka-Bar D2 Extreme, USA	SSA C

As a **CONTROL TEST**, to see if the sharpening abrasive as such imparts any difference, we sharpened in the same way a vanadium-free but high-carbon knife in SR-101 steel (Busse Swamp Rat knife), its chemical composition follows.

Knife Steel	HRC	Vanadium	С	Мо	W	Со	Nb	Cr
		%	%	%	%	%	%	%
SR-101	57-59	-	1	-	-	-	-	1.5


SHARPENING METHOD

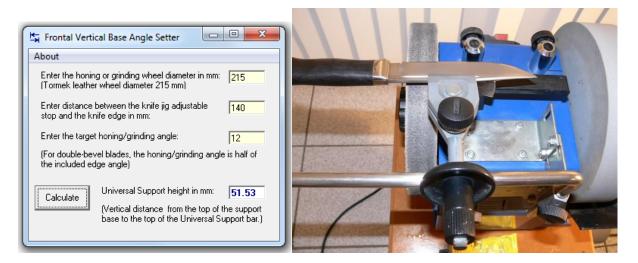
We know from our previous SET tests that the results depend on the edge angle and initial sharpness.

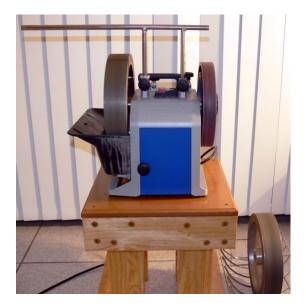
All knives were sharpened and honed the same way on Tormek T-7 and T-8 machines at the same edge angle of 12 degrees per side (24° included) and to the same sharpness within 80-100 BESS. Sharpness of 100 BESS is midway between safety razors and utility blades; for those new to BESS - the lower the score, the sharper is the edge, e.g. a safety DE razor scores 50 BESS, and utility blades 150-200 BESS.

Edge angle was ground with the help of <u>our computer software for Tormek</u> and verified with a CATRA laser protractor.

🔄 Grinding Angle Se	tter	
About		
C Tormek-8	Enter the grinding wheel diameter in mm:	238.4
 Tormek-7 	Enter distance between the knife jig	140
C Tormek-4	adjustable stop and the knife edge in mm:	
SuperGrind 2000	Enter the target grinding angle:	12
	(For double-bevel blades, the grinding angle the included edge angle)	e is half of
Calculate	Universal Support height in mm:	160.82
	(Vertical distance from the top of the housi top of the Universal Support bar.)	ng to the

The first sharpening was made with Tormek stock 250 mm aluminium oxide wheels, and honing on the Tormek leather wheel with the Tormek honing paste, known to be chiefly of aluminium oxide particles averaging 3 microns in size.


Edge bevel was ground on a freshly trued SG-250 wheel (#220), and edge set on a dedicated SG-250 wheel graded to #1000 with a diamond plate.


grading to grit #1000

Honing angle was controlled with our <u>FVB for Tormek-7 and computer software</u>. First round of SET testing was run on these knives.

The same knives were then re-sharpened on Tormek-compatible 254 mm CBN wheels, and honed on a dedicated Tormek leather wheel impregnated with 3-micron diamonds. Edge bevel was ground on a CBN wheel #400, and edge set on a CBN wheel #1000. For honing on Tormek with diamonds we normally use a rock-hard felt wheel, but this time used the leather wheel to hone the same way as in the first sharpening.

Second round of SET testing was then run.

To match sharpening done with aluminium oxide and CBN/diamond, in each sharpening we set the edge with 2 passes on the #1000 aluminium oxide or CBN wheel, and were giving the edge the same amount of honing of 2-3 slow passes across the leather wheel, alternating sides.

With this setup, in sense of achievable sharpness I didn't find aluminium oxide much inferior to CBN or diamonds in sharpening high vanadium steels, though definitely slower in bevelling – having ground the edge angle on a coarse SG wheel, we set the edge with two passes alternating sides on the SG wheel graded to the grit #1000, and honed/deburred with 2-3 slow passes on the leather wheel with the Tormek honing paste – in all cases the sharpness we got was within 80-100 BESS. It was faster to bevel the edge angle on a coarse CBN wheel, but by setting the edge with the same two passes on the grit #1000 CBN wheel and honing with 2-3 passes on the leather wheel with 3-micron diamonds we were getting the same sharpness.

DATA

ABRASIVE →

Data numbers in the charts is the number of the impact roller cycles with the resultant sharpness. E.g. "x1 = 250, x2 = 300 " means after 1 impact cycle the edge sharpness is 250 BESS, after 2 cycles 300 BESS, and so on.

CBN/Diamond

	Aluminium Oxide	CBN/Diamond
STEEL V		
anadis 10	x1=243	x1=203
V 9.8 %	x2=266	x2=206
HRC 63	x3=265	x3=234
	x4=305	x4=268
	x5=312	x5=302
	x10=317	x10=292
	x15=339	x15=323
	x20=380	x20=348
	x25=355	x25=330
	x30=410	x30=358
	x35=403	x35=372
	x40=404	x40=409
	x45=416	x45=386
	x50=451	x50=361
	x60=489	x60=380
	x70=489	x70=389
	x80=490	x80=425
	x90=476	x90=374
	x100=451	x100=453
	x120=468	x120=411
	x140=522	x140=412
		x160=410
		x180=408
		x200=418
		x220=389
		x240=377
		x260=446
		x280=434
		x300=412
		x320=464
		x340=494
		x360=463
		x380=529
CPM20CV	x1=275	x1=215
v 4.0 %	x2=282	x2=196
HRC 60	x3=297	x3=208
	x4=303	x4=259
	x5=328	x5=275
	x10=331	x10=312
	x15=324	x15=317
	x20=375	x20=347
	x25=401	x25=354
	x30=391	x30=349
	x35=423	x35=371
		1

x40=436

x45=443

Aluminium Oxide

All knives are sharpened at an edge angle of 12 dps, to initial sharpness near 100 BESS.

x40=427

x45=384

x50=450 x50=394 x60=437 x60=416 x70=411 x70=438 x80=479 x80=449 x90=464 x90=456
x70=411 x70=438 x80=479 x80=449
x80=479 x80=449
x00-464 x00-466
x90=464 x90=456
x100=449 x100=457
x120=506 x120=459
x140=478
x160=483
x180=471
x100=491
x220=493
Elmax x1=264 x1=221
v 3.0 % x2=290 x2=213
HRC 62 x3=345 x3=246
x4=369 x4=245
x5=395 x5=277
x10=402 x10=288
x15=458 x15=312
x20=487 x20=317
x25=500 x25=373
x30=495 x30=413
x35=545 x35=380
x40=558 x40=402
x45=533 x45=446
x50=607 x50=430
x60=622 x60=455
x70=605 x70=418
x80=641 x80=410
x90=618 x90=429
x100=683 x100=482
x120=468
x140=514
Lohmann PGK x1=257 x1=280
v 2.0 % x2=275 x2=313
HRC 62 x3=300 x3=271
x4=289 x4=357
x5=315 x5=344
x10=361 x10=342
x15=347 x15=377
x20=382 x20=366
x25=429 x25=449
x30=413 x30=416
x35=464 x35=461
x40=498 x40=458
x45=464 x45=403
x50=499 x50=482
x60=502 x60=495
x70=544 x70=484
x80=591 x80=450
x90=519 x90=419
x100=545 x100=525
D2 x1=263 x1=216
V 1.0 % x2=292 x2=323
HRC 60 x3=317 x3=340
x4=337 x4=349

	x5=353	x5=328
	x10=398	x10=341
	x15=440	x15=359
	x20=478	x20=376
	x25=494	x25=400
	x30=495	x30=402
	x35=496	x35=428
	x40=478	x40=424
	x45=520	x45=434
	x50=534	x50=477
	x60=585	x60=493
	x70=602	x70=494
	x80=605	x80=506
	x90=616	x90=532
	x100=559	x100=563
CONTROL SR-101	x1=279	x1=241
V 0%	x2=299	x2=235
HRC 57-59	x3=337	x3=292
	x4=372	x4=315
	x5=375	x5=343
	x10=421	x10=387
	x15=470	x15=416
	x20=498	x20=428
	x25=532	x25=464
	x30=523	x30=507
	x35=520	x35=474
	x40=540	x40=514
	x45=567	x45=510
	x50=565	x50=480
	x60=622	x60=551
	x70=632	x70=630
	x80=665	x80=570
	x90=612	x90=711
	x100=666	x100=602

Key Indicators

KEY INDICATOR → STEEL ↓	Average sharpness over Average sharpness in the 100 cycles Phase I (elastic deformation)		Sharpness by the end of the Phase II (elasto-plastic transition)		Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling)				
	3	Alum. Oxide	CBN/diamond	Alum. Oxide	CBN/diamond	Alum. Oxide	CBN/diamond	Alum. Oxide	CBN/diamond
Vanadis 10	V 9.8 %	382	338	278	243	424	385	140	380
CPM20CV or M390	V 4.0 %	384	348	297	231	443	402	120	220
Elmax	V 3.0 %	496	356	333	240	566	426	25	140
Lohmann PGK	V 2.0 %	421	405	287	313	487	448	60	100
D2	V 1.0 %	466	410	312	311	511	445	45	80
CONTROL SR-101	-	500	456	332	285	557	501	25	30

PERCENTAGE DIFFERENCE in sharpness between the CBN/Diamond and Aluminium Oxide

(% of better sharpness of CBN/Diamond vs Aluminium Oxide)

KEY INDICATOR → STEEL ↓	Vanadium	Average sharpness over 100 cycles	Average sharpness in the Phase I (elastic deformation)	Sharpness by the end of the Phase II (elasto-plastic transition)	Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling)
Vanadis 10	V 9.8 %	13%	14%	10%	171%
CPM20CV or M390	V 4.0 %	10%	29%	10%	83%
Elmax	V 3.0 %	39%	39%	33%	460%
Lohmann PGK	V 2.0 %	4%	-8%	9%	66%
D2	V 1.0 %	14%	0%	15%	78%
CONTROL SR-101	-	10%	17%	11%	20%

3% VANADIUM PHENOMEN

"Curiouser and curiouser!" as said Alice in Wonderland.

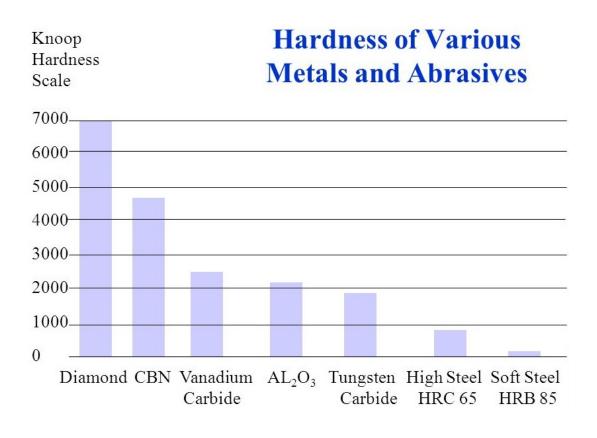
Numbers tell us that edge rolling does depend on whether we sharpen with aluminium oxide or CBN/diamond, and CBN/diamond gives better lasting sharpness than aluminium oxide, but correlation with the vanadium content is not linear – instead, there is a dramatic rolling in edges with vanadium content of 3% sharpened with aluminium oxide.

DATA INTERPRETATION AND CONCLUSIONS

Control 0% vanadium (SR-101) – the control test shows some improvement in edge resistance to rolling when CBN/diamond abrasives are used, which is interesting in itself, however the main thing it gives us for the purpose of this research is the baseline difference between the CBN/diamond and aluminium oxide abrasives, so that any numbers less-than-or-equal-to are not related to alloys composition.

Vanadium 1% (D2) - CBN/diamond abrasives moderately improve sharpness over aluminium oxide, with no difference in the initial period.

Vanadium 2% (PGK) - CBN/diamond abrasives have little to no advantage over aluminium oxide, seen only in somewhat prolonged edge life; initially the edge sharpened on aluminium oxide shows even better elasticity and sharpness (Phase I).


Vanadium 3% (Elmax) - CBN/diamond abrasives show high advantage over aluminium oxide, the edge stays sharp by 4 times longer. In saying so we are talking in relative terms, and positive effect of the CBN/diamond as such is not that much different from its neighbours of 2% and 4% vanadium (as seen by absolute sharpness scores) – it is the aluminium oxide worsened edge retention that makes the numbers so high.

Vanadium 4% (CPM20CV or M390) - CBN/diamond abrasives have moderate advantage over aluminium oxide, clearly noticeable both in the initial period and prolonged life of the edge.

Vanadium 9.8% (Vanadis 10) - CBN/diamond abrasives have moderate to high advantage over aluminium oxide, the working edge lasts 1.5 times longer.

3% vanadium is the threshold content, where sharpening with CBN/diamond becomes preferred over common abrasives.

The following hardness graph shows why the common abrasives like aluminium oxide may weaken steel matrix around the vanadium and alike wear-resistant carbides.

In the below charts we compare SET data of knives from this and our previous research sharpened at 12 degrees to initial sharpness of about 100 BESS, using CBN/diamond abrasives. Results are sorted from the best (at the top) to the worst.

KEY INDICATOR → STEEL ↓	Average sharpness over 100 cycles	Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling)	Sharpness by the end of the Phase II (elasto-plastic transition)
Vanadis 10	338	380	385
CPM20CV or M390	348	220	402
Elmax	356	140	426
Lohmann PGK	405	100	448
D2	410	80	445
SR-101	456	30	501
Global	475	45	523
x45CrMoV15	486	35	536

Steel composition: HRC, Carbon and wear-resistant alloys

Knife Steel	HRC	С	V	Мо	W	Cr
		%	%	%	%	%
Vanadis 10	63	2.9	9.8	1.5	-	8.0
CPM20CV or M390	60	1.9	4.0	1.0	0.6	20.0
Elmax	62	1.7	3.0	1.0	-	18.0
Lohmann PGK	62	1.2	2.0	1.5	1.5	8.2
D2	60	1.5	1.0	0.8	-	12
SR-101	57-59	1	-	-	-	1.5
Global	56-58	0.7	0.3	0.3	-	14
x45CrMoV15	56-57	0.45	0.15	0.5	-	15

Key indicators:

- Overall average sharpness over 100 impact cycles;
- Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling);
- Sharpness by the end of the Phase II (elasto-plastic transition) calculated as an average of 3 sharpness scores:

after 40, 45 and 50 impact cycles.

Even without fancy graphs, just looking at the numbers, it is clear that edge retention correlates primarily with the content of wear-resistant alloys, then with the carbon content, and finally with the HRC.

However, when we look at the resistance to initial rolling in the first 5 impact cycles, we see that, though wear-resistant steels do withstand rolling by about 30% better, there is **no correlation between the wear resistance and resilience to initial rolling**.

KEY INDICATOR → STEEL ↓	Average sharpness in the Phase I (elastic deformation) average of sharpness scores in the first 5 impact cycles
Vanadis 10	243
CPM20CV or M390	231
Elmax	240
Lohmann PGK	313
D2	311
SR-101	285
Global	398
X45CrMoV15	329

The high-vanadium edge sharpness quickly moves beyond the shaving range to just sharp. Wear-resistant edges win in the long run, but in the first impacts a 10% vanadium edge apex rolls to the same extent as a 3%, and both the 3% and 10% vanadium edges lose their initial keenness almost at the same rate as a mainstream knife. Higher wear-resistant blades win as stayers, but are equal sprinters.