KNIFE GRINDERS KG

www.knifeGrinders.com.au KG@knifegrinders.com.au Australia

By Vadim Kraichuk

Edge Stability in Butcher's and Kitchen Knives as a Function of Edge Angle and Initial Sharpness

<u>Structural Edge Tester</u> (SET) is a method and device developed by <u>Edge On Up</u> for testing edge stability. In a nutshell, the edge is subjected to controlled rolling, the extent of which is quantified. Edge sharpness tester used in the study: PT50A Industrial. Laser protractor: CATRA HobbiGoni Knife-Edge Protractor.

Impact cycle explained

The impact roller is a linear bearing slant at 10° to the horizontal base or in other words at 80° to the plane of the blade clamped vertically.

Standard impact assembly weight is 150 grams.

The impact roller is lowered at "A", then moved (rolled) over to "B" and then back to "A". A-B-A is one cycle.

See our video on YouTube https://youtu.be/EdGOSWjrM0E

Metallurgical microscopy of the edge after a single roll by the **Structural Edge Tester** follows. Sampled is a mainstream knife subjected to 1 rolling cycle.

The microscopy by Tony Spielberg, USA

The upper portion of the micrograph shows an untouched region of the edge apex. The edge apex is lightly convex from honing.

The lower portion of the image shows where the edge has been rolled over. The rolled region has been pushed towards the viewer.

Copyright Knife Grinders 2018

PLAN

The plan is to use SET to test edge retention in butcher's and mainstream kitchen knives sharpened in the "very sharp" range of 50 BESS, 100 BESS, 150 BESS and 200 BESS for edge angles 8, 10, 12, 15 and 20 degrees per side.

The initial sharpness of 50 and 100 BESS represents the sharpest edges nearing a DE razor, while the initial sharpness of 150 and 200 BESS – just sharp knives in the range of utility blade sharpness.

Edge angles of 8 and 10 degrees per side (dps) are more typical of high carbon Japanese knives, while edge angles of 15 and 20 degrees are common in Europe (30° included) and the USA (40° included).

Mainstream kitchen knives are commonly produced with the edge angle of 30° included. Meat processing plants usually sharpen their knives at 35-40° included.

These edge angles have become common through the sharpening tradition, and our research is to validate the tradition or challenge it.

Another aspect of our study is to see whether there is any relation between the initial knife sharpness and edge retention. Traditionalists say that to hold the edge well the knife should be just working sharp, while enthusiasts say "the sharper the better"; this is the least researched area.

KNIVES

We started the testing with Victorinox/Wenger SWIBO professional meat processing knives of HRC 56-58 and Carbon content 0.5%, new out of the box.

To minimise change in the blade profile due to repeated sharpening, for each edge angle we used a separate new knife; all knives are identical, Victorinox Catalogue # 5.8401.14

Though steel of these knives best matches Victorinox kitchen knives X50CrMoV15, they can represent butcher's and mainstream kitchen knives of other brands as well.

SHARPENING METHOD

Edge angle was ground on Tormek T-8 with the help of <u>our computer software for Tormek</u>, and **verified with a CATRA laser protractor in each case**.

Sampled knife edge is 15 dps (30 degrees included)

CBN wheels 254mm in diameter were used: edge bevels were ground on CBN grit #400, and the edge set on CBN grit #1000.

The CBN wheel was chosen over the Tormek or Japanese wheels for the precision it offers, as the CBN wheel diameter never changes, while the stone wheel diameter drops with grinding due to the consumption of the abrasive, slightly increasing the grinding angle in the process.

The target edge sharpness was set by controlled-angle honing on paper wheels with a fine diamond paste within +/- 10 BESS of the target.

The honing angle was controlled with the help of <u>our software for paper wheels</u>.

DATA

Data numbers in the charts is the number of the impact roller cycles with the resultant sharpness. E.g. "x1 = 150, x2 = 300 " means after 1 impact cycle the edge sharpness is 150 BESS, after 2 cycles 300 BESS, and so on.

For the purpose of this study, we measured the edge sharpness after every cycle for the first 5 cycles (Phase I), then after every 5 cycles to 50 cycles (Phase II), and then (i.e. from the 50th to 100th cycles) after every 10 cycles (Phase III).

This way we've covered the two checks that have been agreed as checkpoints for all field testers: sharpness value after 5 cycles - Phase I checkpoint for "elastic deformation"; and number of cycles causing "permanent rolling" - Phase II checkpoint for "plastic deformation".

VICTORINOX/WENGER SWIBO BUTCHER'S KNIVES

Stainless steel, Hardness HRC 56-58, Carbon 0.5%

Raw Data

Graphs I build on these numbers later on are a tad more comprehensible.

EDGE ANGLE (dps) →	8°	10°	12°	15°	20°
INITIAL SHARPNESS \downarrow					
50 BESS	Dented by	Dented by	x1=264	x1=269	Cannot get on
	test media	test media	x2=311	x2=311	this steel at
	line	line	x3=205	x3=339	this angle
			x4=287	x4=349	_
			x5=340	x5=389	
			x10=338	x10=413	
			x15=329	x15=426	
			x20=333	x20=387	
			x25=395	x25=435	
			x30=364	x30=419	
			x35=339	x35=416	
			x40=387	x40=443	
			x45=412	x45=418	
			x50=468	x50=376	
			x60=462	x60=429	
			x70=448	x70=422	
			x80=435	x80=526	
			x90=426	x90=541	
			x100=451	x100=494	
100 BESS	Dented by	Dented by	x1=251	x1=323	x1=261
	test media	test media	x2=287	x2=345	x2=337
	line	line	x3=324	x3=364	x3=365
			x4=344	x4=344	x4=383
			x5=386	x5=411	x5=384
			x10=385	x10=375	x10=375
			x15=392	x15=401	x15=420
			x20=351	x20=431	x20=398
			x25=408	x25=390	x25=464
			x30=395	x30=426	x30=483
			x35=376	x35=426	x35=466
			x40=377	x40=440	x40=515
			x45=394	x45=453	x45=574

					FO 46F
			x50=475	x50=481	x50=465
			X60=462	X60=512	X60=485
			x/0=501	x/0=531	x/0=497
			x80=463	x80=529	x80=607
			x90=519	x90=551	x90=636
			x100=485	x100=586	x100=527
150 BESS	Dented by	Dented by	x1=219	x1=238	x1=319
	test media	test media	x2=305	x2=313	x2=371
	line	line	x3=281	x3=285	x3=406
			x4=385	x4=354	x4=399
			x5=368	x5=368	x5=418
			x10=384	x10=371	x10=481
			x15=394	x15=429	x15=515
			x20=390	x20=460	x20=509
			x25=485	x25=438	x25=564
			x30=429	x30=478	x30=530
			x35=483	x35=451	x35=598
			x40=500	x40=494	x40=632
			x45=453	x45=567	x45=512
			x50=520	x50=481	x50=631
			x60=430	x60=550	x60=695
			x70=525	x70=618	x70=696
			x80=391	x80=641	x80=646
			x90=545	x90=680	x90=644
			x100=584	x100=616	x100=720
200 BESS	Dented by	Shallow dent	x1=262	x1=283	x1=364
	test media	by test media	x2=305	x2=338	x2=371
	line	line	x3=322	x3=330	x3=407
			x4=339	x4=354	x4=438
			x5=394	x5=449	x5=425
			x10=419	x10=430	x10=471
			x15=418	x15=471	x15=422
			x20=405	x20=487	x20=548
			x25=449	x25=495	x25=561
			x30=454	x30=489	x30=596
			x35=481	x35=510	x35=587
			x40=458	x40=558	x40=626
			x45=469	x45=558	x45=652
			x50=489	x50=587	x50=674
			x60=458	x60=564	x60=614
			x70=505	x70=634	x70=687
			x80=568	x80=592	x80=743
			x90=536	x90=617	x90=561
			x100=538	x100=647	x100=608

An 8 dps edge (16° included) collapses on the test media line – see the microscope image.

I had to estimate sharpness by alternative methods described in our <u>Sharpness Chart</u>:

Around 50 BESS – splits a hair but won't cross push-cut Tally-Ho cigarette rolling paper;

Around 100 BESS – won't split or cut a hanging hair, but longitudinally push-cuts Tally-Ho cigarette rolling paper and violin hair sign is positive;

Around 150 BESS – won't longitudinally push-cut Tally-Ho cigarette rolling paper and the violin hair sign is negative, but shaves forearm;

Around 200 BESS – won't shave forearm, though force-scrapes off the hair, and slices a sales docket.

While measuring the 8dps blades on the Edge Sharpness Tester, the test media line dents edges sharpened to 50, 100, 150 and 200 BESS, rendering further SET tests both impossible and meaningless.

Just for the protocol, the score in the dents is 800-1500 BESS.

A 10dps edge (20° included) is also dented by the test media line, though to a lesser degree than the 8dps, so that the dents can barely be seen naked-eyed but nevertheless rendering further SET tests meaningless for practical purposes – the next microscope image shows 2 dents left by attempts to measure sharpness of an 80-100 BESS edge, followed by an image of a shallow dent left by the test media line on a 10dps edge sharpened to 180-200 BESS.

The score in the dents is within 200-600 BESS, which we interpreted as promising of a better edge stability in edges sharpened at a higher angle, and further experiments proved this.

12 dps edge (24° included) is stable

The following microscope image shows the 12dps edge of initial sharpness 50 BESS after 20 SET measurements taken at the same spot – the black mark is where the sharpness was repeatedly measured, and as you see this point is undistinguishable from the rest of the edge.

To make sure the test media line itself does not effect the edge as it was the case of 8dps and 10dps edges, after 100 impact cycles we took an additional sharpness measurement a few mm away from the mark, on an edge segment that had not been measured for sharpness but was still in the impact area, and the sharpness score was virtually the same as in the point used for measurements.

At 12 dps knife edge response to the test load remotely resembles that of a slow wear, whereas at 10dps and lower it is an immediate deformation.

I say "resembles" because a rolled edge and edge blunted by abrasive wear behave differently: the bent springy edge shows fluctuating sharpness scores up and down as the edge deteriorates, while abrasive wear shows more linear blunting.

EDGE RETENTION

The following graphs show edge retention as a function of initial sharpness.

12 dps (24° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
50 BESS	368
100 BESS	399
150 BESS	425
200 BESS	435

The sharper is the edge the better is retention.

15 dps (30° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
50 BESS	411
100 BESS	438
150 BESS	465
200 BESS	494

The sharper is the edge the better is retention.

500 BESS is where the knife turns blunt.

At 15 dps, knives sharpened under 100 BESS (i.e. near razor sharp) stay sharp twice as long as knives with the initial sharpness of 150-200 BESS (i.e. utility blade sharpness) – 80 impact cycles vs 40.

20 dps (40° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	455
150 BESS	541
200 BESS	545

The sharper is the edge the better is retention.

500 BESS is where the knife turns blunt.

At 20 dps, knives sharpened to 100 BESS (i.e. next to razor sharp) stay sharp twice as long as knives with the initial sharpness of 150-200 BESS (i.e. utility blade sharpness) – 40 impact cycles vs 20.

By the far-famous Cliff Stamp's concept and his experimental data, an edge of 12 dps should outperform those of 15 and 20 dps. Cliff Stamp advocates that knives should have the thinnest edge possible for a given blade steel and task.

If our SET tester data are in line with Cliff Stamp's concept it would prove the SET can be an alternative to cutting tests that Cliff used to prove his concept.

To see what our SET tester shows in this regard, we've **averaged sharpness data** across all initial sharpness for each edge angle– this way we abstract from the initial sharpness and focus on the edge angle.

For example, average sharpness after 10 Cycles was calculated for 12 degree edge as: (338 + 385 + 384 + 419)/4, where 338 is the score for the initial sharpness of 50 BESS, 385 is the score for the initial sharpness of 100 BESS, 384 is the score for the initial sharpness of 150 BESS, and 419 is the score for the initial sharpness of 200 BESS.

Averaging this way not only better reveals the tendency, but also boosts trust in the data we've obtained, because the sets of data for each initial sharpness can be treated as a retention test for a

given edge angle repeated on 4 different knives to confirm reproducibility of the results; in confronting reality people cut with varying initial sharpness.

EDGE ANGLE (dps)	12°	15°	20°
AVERAGE SHARPNESS	407	452	514

The following chart and graph show edge retention as a function of edge angle.

The thinner is the edge the better is retention.

EDGE ANGLE (dps) →	12°	15°	20°
AVERAGE SHARPNESS	x1=249	x1=278	x1=315
	x2=302	x2=327	x2=360
	x3=283	x3=330	x3=393
	x4=339	x4=350	x4=407
	x5=372	x5=404	x5=409
	x10=382	x10=397	x10=442
	x15=383	x15=432	x15=452
	x20=370	x20=441	x20=485
	x25=434	x25=440	x25=530
	x30=411	x30=453	x30=536
	x35=420	x35=451	x35=550
	x40=431	x40=484	x40=591
	x45=432	x45=499	x45=579
	x50=488	x50=481	x50=590
	x60=453	x60=514	x60=598
	x70=495	x70=551	x70=627
	x80=464	x80=572	x80=665
	x90=507	x90=597	x90=614
	x100=515	x100=586	x100=618

These averaged data tell us the best retention has the edge sharpened at 12 dps, and we already know that at this edge angle the best performing is the initial sharpness of 50 BESS i.e. razor sharp. Knives sharpened at 20 dps turn blunt (500 BESS) by the 20th impact cycle, knives at 15 dps outlast

twice as long, and knives at 12 dps over 3 times longer.

The edge angle has clearly a more definitive effect on the knife performance than the initial edge sharpness, unless this sharpness is <= 100 BESS.

Our SET data are in line with Cliff Stamp's cutting tests and concept.

COMPARISON TO EDGE RETENTION AT A MEAT PLANT

SWIBO knives similar to those used in this research were used in a separate research on edge retention at a meat plant.

Overall 8 boning operators used four SWIBO knives for two days: 4 operators on the day 1, and another 4 on the day 2; the edge sharpness was measured every 1.5 hours throughout the work shifts.

These knives were sharpened at 40 degrees with the initial sharpness about 100 BESS. The meat plant averaged data are shown below:

Sharpness through the work shift (BESS)

Knife Brand	Initial sharpness	In 1.5 hours	In 3 hours	In 4.5 hours
SWIBO 5.8404.16	115	308	316	324

Compared to the knives sharpened at 40 degrees with the initial sharpness of 100 BESS in our SET research, the meat plant edge retention numbers fall within the range of the first 5 impact cycles.

CONCLUSIONS

The testing regimen had been designed right, because sharpness of all knives neared or exceeded 500 BESS i.e was rendered blunt by the 100th impact cycle.

The SET method has proved a valid and better alternative to cutting tests for edge retention, providing the researcher with precise data suitable for quantitative and statistical analysis.

"The sharper is the edge the better is retention" appears to be a rule for all edge angles.

The optimal edge angle for butcher's and mainstream kitchen knives is 12 dps (24° included), sharpened to 50-100 BESS (i.e. nearing a DE razor in sharpness), though the edge angle is clearly a stronger determinant in the edge retention compared to the initial sharpness.

At this angle the edge and apex are both strong enough to resist deformation.

Knives sharpened at 12 dps stay sharp 3 times longer than knives sharpened at 20 dps, and almost twice as long as 15 dps knives.

On the contrary, lower than 12 dps edges are too weak and easily deform under the load.

As it has been mentioned, SWIBO knives steel best matches Victorinox kitchen knives X50CrMoV15 (HRC 56-58, Carbon contents 0.5%).

For higher ranking kitchen knives (e.g. Global HRC 56-58 Carbon 0.7%) we expect the optimal edge angle to be under 12 dps, while for those with Carbon contents <= 0.45% (e.g. Scanpan x45CrMoV15 HRC 56-57 Carbon 0.45%) to be higher. These two lines of knives are being tested as I type this.

We've proved that the SET method can be used to determine the most robust edge angle for knives used at meat processing plants.

Sharpening at the best angle for a given knife brand ensures the best edge retention, sharpness and longer life span of the knives, saving plants tens of thousands of dollars a year.

We think of slightly lessening the impact to better match the SET to the meat plant numbers obtained in live studies; we should be able to do this by lessening the angle at which the impact roller meets the edge; additional tests are required to determine the right roller angle.

You may call us day dreamers, but we hope to equal one impact cycle to one hour of cutting at the meat plant conveyer.

SEQUENCE #2

Using the same methods and equipment, we tested edge retention in two more brands of kitchen knives: one of less hardness, less Carbon contents and known to hold the edge worse than the Victorinox SWIBO knives, and the other of higher Carbon contents and known to hold the edge better.

The only difference with the previous tests was that to study relation between the initial sharpness and edge retention we used the initial sharpness of 100 BESS (i.e. next to razor sharp) versus 200 BESS (i.e. utility blade sharpness).

STEP DOWN

SCANPAN Classic Kitchen knife Stainless steel **X45CrMoV15**, Hardness HRC 56-57, **Carbon 0.45%**

RAW DATA

Data numbers in the charts is the number of the impact roller cycles with the resultant sharpness.

E.g. "x1 = 150, x2 = 300 " means after 1 impact cycle the edge sharpness is 150 BESS, after 2 cycles 300 BESS, and so on.

EDGE ANGLE (dps) →	10°	12°	15°	20°
	Dentedler			
100 BESS	Dented by	x1=268	x1=365	x1=367
	test media	x2=290	x2=382	x2=406
	line	x3=335	x3=396	x3=475
		x4=385	x4=452	x4=466
		x5=369	x5=395	x5=487
		x10=375	x10=469	x10=420
		x15=416	x15=530	x15=540
		x20=420	x20=597	x20=694
		x25=439	x25=624	x25=723
		x30=498	x30=733	x30=652
		x35=515	x35=722	x35=694
		x40=493	x40=738	x40=805
		x45=547	x45=754	x45=839
		x50=567	x50=843	x50=808
		x60=608	x60=764	x60=644
		x70=623	x70=759	x70=807
		x80=665	x80=784	x80=857
		x90=692	x90=830	x90=811
		x100=719	x100=844	x100=846

200 BESS	Dented by	x1=349	x1=389	x1=398
	test media	x2=360	x2=448	x2=418
	line	x3=384	x3=483	x3=450
		x4=422	x4=485	x4=501
		x5=505	x5=466	x5=480
		x10=530	x10=530	x10=484
		x15=662	x15=481	x15=552
		x20=511	x20=558	x20=618
		x25=674	x25=649	x25=625
		x30=755	x30=561	x30=639
		x35=688	x35=734	x35=586
		x40=668	x40=568	x40=777
		x45=787	x45=692	x45=729
		x50=787	x50=707	x50=629
		x60=821	x60=721	x60=642
		x70=831	x70=722	x70=755
		x80=716	x80=820	x80=817
		x90=769	x90=882	x90=907
		x100=784	x100=707	x100=850

AVERAGED DATA

We average data the same way we did for the SWIBO knives, mainly to boost trust in the data we've obtained, because the sets of data for each initial sharpness can be treated as a retention test for a given edge angle repeated on different knives to confirm reproducibility of the results.

EDGE ANGLE (dps)	12°	15°	20°
AVERAGE SHARPNESS	559	621	637

EDGE ANGLE (dps) →	12°	15°	20°
INITIAL SHARPNESS $igstarrow$			
AVERAGE SHARPNESS	x1=309	x1=377	x1=383
	x2=325	x2=415	x2=412
	x3=360	x3=440	x3=462
	x4=404	x4=469	x4=484
	x5=437	x5=430.5	x5=484
	x10=453	x10=500	x10=452
	x15=539	x15=505	x15=546
	x20=466	x20=578	x20=656
	x25=557	x25=637	x25=674
	x30=627	x30=647	x30=646
	x35=602	x35=728	x35=640
	x40=581	x40=653	x40=791
	x45=667	x45=723	x45=784
	x50=677	x50=775	x50=719
	x60=715	x60=743	x60=643
	x70=727	x70=741	x70=781
	x80=691	x80=802	x80=837
	x90=731	x90=856	x90=859
	x100=752	x100=776	x100=848

10 dps (20° degrees included) edge

A shaving sharp 10 dps edge about 150 BESS by the Sharpness Chart, is dented by the test media line, scoring in the dent 700 BESS on the sharpness tester.

As it was in the case of Victorinox SWIBO knives, this indicates the angle at which the edge becomes unstable and easily deformable, rendering further tests both meaningless and impossible.

12 dps (24° degrees included) edge

Microscopy is unremarkable – no visible deformation after sharpness measurements.

The following charts show edge retention as a function of initial sharpness.

12 dps (24° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	485
200 BESS	632

The sharper is the edge the better is retention.

15 dps (30° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	631
200 BESS	611

No relation between the initial sharpness and edge retention (difference < 5%).

20 dps (40° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	650
200 BESS	624

No relation between the initial sharpness and edge retention (difference < 5%).

The following chart of averaged data shows edge retention as a function of edge angle.

EDGE ANGLE (dps)	12°	15°	20°
AVERAGE SHARPNESS	559	621	637

The thinner is the edge the better is retention.

<u>STEP UP</u>

GLOBAL Classic Kitchen Knife

Stainless steel CROMOVA 18, Hardness HRC 56-58, Carbon 0.7% (other source 0.55%)

RAW DATA

Data numbers in the charts is the number of the impact roller cycles with the resultant sharpness. E.g. "x1 = 150, x2 = 300" means after 1 impact cycle the edge sharpness is 150 BESS, after 2 cycles 300 BESS, and so on.

EDGE ANGLE (dps) →	10°	12°	15°	20°
INITIAL SHARPNESS \downarrow				
100 BESS	x1=332	x1=357	x1=277	x1=314
	x2=332	x2=418	x2=334	x2=366
	x3=381	x3=411	x3=384	x3=397
	x4=404	x4=388	x4=420	x4=444
	x5=393	x5=416	x5=398	x5=482
	x10=380	x10=408	x10=429	x10=457
	x15=404	x15=436	x15=412	x15=519
	x20=426	x20=471	x20=473	x20=546
	x25=409	x25=450	x25=455	x25=525
	x30=431	x30=461	x30=509	x30=532
	x35=411	x35=464	x35=454	x35=531
	x40=438	x40=473	x40=554	x40=507
	x45=401	x45=518	x45=543	x45=560
	x50=439	x50=577	x50=531	x50=582
	x60=492	x60=525	x60=497	x60=621
	x70=451	x70=533	x70=586	x70=522
	x80=499	x80=535	x80=563	x80=620
	x90=540	x90=590	x90=587	x90=552
	x100=586	x100=597	x100=584	x100=598
200 BESS	x1=340	x1=316	x1=356	x1=418
	x2=341	x2=375	x2=451	x2=443
	x3=386	x3=395	x3=460	x3=470
	x4=372	x4=386	x4=490	x4=419
	x5=397	x5=362	x5=491	x5=466
	x10=400	x10=396	x10=530	x10=458
	x15=412	x15=408	x15=583	x15=580
	x20=445	x20=415	x20=544	x20=562
	x25=458	x25=463	x25=458	x25=513
	x30=474	x30=397	x30=574	x30=550
	x35=453	x35=422	x35=614	x35=503
	x40=465	x40=439	x40=564	x40=470
	x45=431	x45=407	x45=602	x45=464
	x50=449	x50=472	x50=524	x50=500
	x60=481	x60=502	x60=524	x60=482
	x70=566	x70=491	x70=546	x70=508
	x80=614	x80=512	x80=613	x80=533
	x90=572	x90=538	x90=574	x90=590
	x100=561	x100=614	x100=765	x100=569

AVERAGED DATA

EDGE ANGLE (dps)	10°	12°	15°	20°
AVERAGE SHARPNESS	441	456	507	504

EDGE ANGLE (dps) →	10°	12°	15°	20°
INITIAL SHARPNESS 🗸				
AVERAGE SHARPNESS	x1=336	x1=337	x1=317	x1=366
	x2=337	x2=397	x2=393	x2=405
	x3=384	x3=403	x3=422	x3=434
	x4=388	x4=387	x4=455	x4=432
	x5=395	x5=389	x5=445	x5=474
	x10=390	x10=402	x10=480	x10=458
	x15=408	x15=422	x15=498	x15=550
	x20=436	x20=443	x20=509	x20=554
	x25=434	x25=457	x25=457	x25=519
	x30=453	x30=429	x30=542	x30=541
	x35=432	x35=443	x35=534	x35=517
	x40=452	x40=456	x40=559	x40=489
	x45=416	x45=463	x45=573	x45=512
	x50=444	x50=523	x50=528	x50=541
	x60=487	x60=514	x60=511	x60=552
	x70=509	x70=512	x70=566	x70=515
	x80=557	x80=524	x80=588	x80=577
	x90=556	x90=564	x90=581	x90=561
	x100=574	x100=606	x100=675	x100=584

8 dps (16° degrees included) edge

An 8 dps edge under 100 BESS by the Sharpness Chart, is dented by the test media line, scoring in the dent 300-500 BESS on the sharpness tester.

I am aware that this contradicts common opinion that Global knives can be sharpened to 15 degrees included, yet at this angle the edge is too weak in the apex for testing by our methods.

Below are microscope images of several attempts to measure sharpness on the BESS tester.

10 dps (20° degrees included) edge

Microscopy is unremarkable – no visible deformation after sharpness measurements.

The following charts show edge retention as a function of initial sharpness.

10 dps (20° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	429
200 BESS	454

The sharper is the edge the better is retention.

12 dps (24° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	475
200 BESS	437

Reverse relation between the initial sharpness and edge retention.

15 dps (30° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	473
200 BESS	540

The sharper is the edge the better is retention.

20 dps (40° included)

Initial Sharpness	Average Sharpness Score over 100 Cycles
100 BESS	509
200 BESS	500

No relation between the initial sharpness and edge retention (difference < 5%).

The following chart of averaged data shows edge retention as a function of edge angle.

EDGE ANGLE (dps)	10°	12°	15°	20°
AVERAGE SHARPNESS	441	456	507	504

The thinner is the edge the better is retention.

STEEL COMPARISON

The following charts and graphs **compare** the knives edge retention.

The following two charts show edge retention by steel, and include average sharpness and **number** of impact cycles it took to render the edge blunt i.e. over 500 BESS (a key indicator).

STEEL →	Weak (SCANPAN)	Mainstream (SWIBO)	Strong (GLOBAL)
AVERAGE SHARPNESS			
10° dps	N/A	N/A	441
12° dps	559	407	456
15° dps	621	452	507
20° dps	637	514	504

STEEL →	Weak (SCANPAN)	Mainstream (SWIBO)	Strong (GLOBAL)
# of cycles till 500+ BESS			
10° dps	N/A	N/A	70
12° dps	25	90	50
15° dps	15	60	30
20° dps	15	25	15

The following graph shows the **best** edge retention by averaged data for each of the steels tested; additionally shown is one more GLOBAL sharpened at 30 degrees included.

The lower ranking SCANPAN at 12 dps outperforming GLOBAL at 15 dps (though not for long) can be explained by the advantage of the lower edge angle, but what about the winning SWIBO?

The seemingly paradoxical SWIBO knives outperforming the higher ranked Global is discussed in the Conclusions below.

CONCLUSIONS

Softer steel (Step down)

The optimal edge angle for mainstream kitchen knives with HRC 56-57 and Carbon 0.45% is 12 dps (24° included), sharpened to 100 BESS; the 12 dps edges with the initial sharpness of 100 BESS stay sharp twice longer compared to the initial sharpness of 200 BESS.

Edges sharpened at 12 dps stay sharp twice as long as those sharpened at 15 and 20 dps, and the 15 dps edges hold sharpness somewhat better than 20 dps - the edge angle remains a strong determinant in the edge retention of softer steel.

Lower than 12 dps edges are too weak in the apex.

Compared to the SWIBO knives, the SET load causes early plastic deformation in the edge of the softer steel X45CrMoV15.

Absence of relation between the initial sharpness and edge retention that we see in easily deformed edges sharpened at 15 and 20 dps, suggests that the initial sharpness helps to hold edge only in the elastic deformation phase.

Harder steel (Step up)

The optimal edge angle for better kitchen knives like Global is 10 dps, sharpened to 100 BESS; the 10 dps edge stays sharp by 50% longer than the 12 dps edge, and over 2 times longer than the 15 dps edge.

Edge retention as a function of edge angle

Best edge angle for a knife is the lowest angle at which the edge can take a load without deforming. Steels have a certain smallest angle at which the edge becomes unstable, the stronger the steel the smaller is this angle.

Edge retention as a function of initial sharpness

Generally, the sharper edge shows better retention. Edge retention is improved by the initial sharpness under 100 BESS, however this relation becomes less consistent at and over 100 BESS, especially in lower ranking steels.

Comparison by steel

A knife made of weaker steel, but sharpened to its best at the acutest angle it can hold may outperform a knife of stronger steel sharpened at a more obtuse angle.

As seen by the test data, even a lower ranking SCANPAN knife sharpened to 100 BESS at 12 dps outperforms GLOBAL knife sharpened to 200 BESS at 15 dps.

The above is the common rule ensuing from our SET testing, but not without many exceptions, and

when the exceptions are abundant, this usually tells us there is another hidden rule behind them we are yet to comprehend.

The main **paradox** we see is that SWIBO knives outperform the more wear-resistant Global in our tests.

Obviously, edge rolling is far not the same as wear resistance, and a mainstream steel like SWIBO can tolerate rolling better than a harder steel like GLOBAL; steel compressive strength seems to retain the edge within the elastic deformation range better than hardness.

SET testing method

Number of cycles had been guessed right because sharpness of all knives neared or exceeded 500 BESS (i.e was rendered blunt) by the 100th impact cycle – allowing us to watch the full **life cycle** of the edge within one test.

The testing procedure yields additional information about events happening in the edge as reflected by the test data. The testing regimen we've applied in these series of SET testing has 3 distinctive phases:

- **Phase I** "Elastic deformation" from the 1st to the 5th impact cycle, when sharpness is measured after every cycle considering that interval between subsequent impact cycles is about 30 sec, this break in impact allows the edge to partially recover from rolling. This phase takes about 2.5 min.
- Phase II "Elasto-Plastic transition" from the 6th to 50th impact cycle, where the edge gets 5 impact cycles between sharpness measurements edge is challenged for resistance to plastic deformation. The elastic deformation transits to plastic here, as seen by the lessening of variances in sharpness in the second half of this phase. Phase II is where the initial sharpness contributes the most to the edge longevity through the enhanced elasticity of the thinned edge. Weaker steel simply crashes in this phase. This phase takes 5 min.
- **Phase III** "Plastic deformation" from the 51st to 100th impact cycle, where the edge is continuously rolled 10 times before each next sharpness measurement, testing the edge stability to permanent rolling. This phase takes about 3.5 min.

Key indicators:

- Overall average sharpness over 100 impact cycles;
- Average sharpness in the Phase I (elastic deformation) calculated as an average of sharpness scores in the first 5 impact cycles;
- Sharpness by the end of the Phase II (elasto-plastic transition) calculated as an average of 3 sharpness scores: after 40, 45 and 50 impact cycles;
- Number of impact cycles to turn the edge blunt at 500 BESS (resistance to permanent rolling).

Overall, each SET test takes 11 minutes to estimate life cycle of the edge; for comparison, CATRA's "knife sharpness and life tester" takes 15 minutes in the semi-automatic model and 10 minutes in the automatic model.

SET and CATRA testing should not be opposed, as they focus on different attributes of the edge: of the two main constituents of the edge blunting, SET testing focuses on the edge rolling, while CATRA on the abrasive wear; of the three main steel properties playing role in the edge retention: strength, toughness and hardness – strength is more about resilience to rolling, while hardness to wear.

More tests are needed to estimate edge rolling in so called "super-steels", and compare to the mainstream steels; the data we've got so far tell us that the "super-steels" are not necessarily superior in resilience to rolling unless compared to lower end steels.

The SET method has proved to distinguish different types of steels, even when this difference is subtle, just when interpreting SET data keep in mind that in SET compressive strength/elasticity wins over hardness, as it often does in the kitchen.

Related study

Larrin Thomas, Pittsburgh, PA USA "Maximizing Edge Retention – What CATRA Reveals about the Optimum Edge" <u>https://knifesteelnerds.com/2018/06/18/maximizing-edge-retention</u>